Recenzja

rozprawy doktorskiej mgr inż. Romualda Fejkiela pt. „Analiza oporów tarcia podczas przejścia blachy przez próg ciągowy w procesie tłoczenia blach”,

opracowana na zlecenie Pana Dziekana Wydziału Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej prof. dr hab. inż. Jarosława Sępa,
pismo z dnia 17 maja 2019

Praca wpisuje się w trendy badawcze, dotyczące analizy zjawiska tarcia w procesie tłoczenia cienkościennych elementów blaszanych. Analiza tego zjawiska, choć od lat będąca przedmiotem publikacji i patentów wielu badaczy, wciąż stanowi źródło inspiracji do dalszych, wyspecyfikowanych badań i rozwiązywania istniejących problemów. Jak wiadomo, tarcie pomiędzy odkładanym materiałem a narzędziem, determinuje przebieg procesu kształtowania plastycznego oraz decyduje o właściwościach wyrobów. W procesach tłoczenia tarcie jest złożoną funkcją właściwości materiału, parametrów procesu, topografii powierzchni kształtowanej blachy i narzędzi oraz warunków kontaktu. Występujące w tych procesach zjawisko tarcia zachodzi w warunkach dużych nacisków, które wpływają na wzrost udziału zjawisk tribologicznych, związanych z wyrównywaniem nierówności powierzchni trujących. To z kolei wpływa na wzrost oporów tarcia.

Z doniesień badaczy wynika, że dotychczas zjawisko tarcia w procesie tłoczenia nie zostało scharakteryzowane w sposób kompleksowy i jednoznaczny, pomimo szeregu prób modelujących warunki tarcia w poszczególnych obszarach kształtowanej blachy.
Autor rozprawy podjął próbę podejścia do analizy zjawiska tarcia w procesie tłoczenia. W pracy określono warunki wyznaczania oporów tarcia za pomocą symulatora progu ciągowego w celu zapewnienia najlepszego odwzorowania oporów tarcia występujących w rzeczywistym procesie tłoczenia blachy.

Z powyższych względów uważam, że problematyka i temat rozprawy doktorskiej mgr inż. Romualda Fejkiela zostały trafnie sformułowane i zasługują na uznanie. Wybór tematyki jest jak najbardziej aktualny i wpisuje się w trendy badawcze w obszarze przeróbki plastycznej, ze szczególnym uwzględnieniem zjawiska tarcia w procesie tłoczenia cienkościennych elementów blaszanych z wykorzystaniem progów ciągowych.

Ocena rozprawy doktorskiej

Recenzowana rozprawa, napisana pod opieką naukową dr hab. inż. Tomasza Trzepiecińskiego, prof. PRz, obejmuje 187 stron oraz dodatkowo 8 stron dokumentacji zawierających rysunek złożony tłocznika i rysunki wykonawcze jego wybranych elementów, zawiera 8 rozdziałów, podsumowanie, wnioski końcowe i literaturę, streszczenie w języku polskim i angielskim, wykaz najważniejszych oznaczeń, 169 rysunków w postaci schematów, wykresów i fotografii, 25 tabel oraz 170 pozycji literaturowych, 51 z ostatnich dziesięciu lat, w tym 9 współautorskich Autora dysertacji w języku angielskim z ostatnich czterech lat.

Analiza stanu zagadnienia podzielona jest na dwa rozdziały (2-3), zajmujące w sumie 28 stron. W rozdziale drugim Autor skupia się na wybranych problemach, związanych ze zjawiskiem tarcia i jego rodzajach, systemie tribologicznym i wpływie wybranych właściwości warstw wierzchnich w procesach kształtowania blach. W rozdziale trzecim Doktorant przedstawia zagadnienia dotyczące podziału metod badania oporów tarcia w procesach formowania blach i omawia szczegółowo testy ciągnienia paska blachy, testy zginania blachy z rozciąganiem, ciągnieniem i przeciąganiem, kończąc rozdział opisem zastosowania metodych elementów skończonych i sztucznych sieci neuronowych w badaniach tribologicznych.

Analiza literaturowa oparta w większości o publikacje angielszczyzne, została wykonana na wysokim poziomie, obejmując najważniejsze zagadnienia dotyczące tematyki podjętej w pracy.

Na podstawie analizy stanu zagadnienia Autor w rozdziale czwartym dysertacji formułuje tezy oraz przyjmuje cel i przedstawia zakres pracy (str. 38-40), omawiając je poprzez włączenie ich w badania wstępne, których celem jest wycechowanie układu pomiarowego, sprawdzenie poprawności działania symulatora progu ciągowego, określenie istotności wstępnie wytypowanych zmienności na wartość współczynnika tarcia, oraz weryfikacja wstępnej tezy, że szerokość próbki decyduje o różnym sposobie odkształcenia blachy, wpływając na zmianę powierzchni kontaktu blachy z walcami i badania podstawowe, których celem jest weryfikacja tezy głównej, że dla blachy wykazującej kierunkowość topografii powierzchni, a także ze względu na sposób odkształcenia blachy na pragu.
ciągowym, konieczne jest zastosowanie trójwymiarowego modelu progu ciągowego oraz blachy, dla uzyskania wiarygodnych wyników numerycznych procesu przejścia blachy przez próg ciągowy.

Sformułowane cele są właściwe i jednoznacznie określają istotę rozprawy.

Przedstawiony przez Doktoranta w trzynastu punktach zakres prac badawczych (str. 39-40) jest imponujący, wymagający dogłębnej znajomości zagadnień z obszaru zjawisk tarcia w procesach kształtowania plastycznego blach, badań właściwości mechanicznych i topografii blach, współczynnika tarcia, planowania eksperymentów, sieci neuronowych oraz symulacji numerycznych. Został on zrealizowany poprzez wstępne, weryfikujące i walidujące badania eksperymentalne, budowę modelu neuronowego do wyznaczania współczynnika tarcia i modelowanie MES, określone w oryginalnym, autorskim planie badawczym (str. 57-59, tab. 5.1.3.1-5.1.3.2.). Rozdziały 5-8, zawarte na 118 stronach, to praktyczna realizacja planu badawczego, zmierzająca do uzyskania założonego celu naukowego i praktycznego oraz udowodnienia tez dysertacji.

Ogólne założenia badawcze, zrealizowane przez Doktoranta, dotyczące symulacji warunków tarcia na progu ciągowym, polegały na przeciąganiu blachy z jednoczesnym zginaniem. Autor dysertacji zrealizował badania na urządzeniach będących na wyposażeniu Katedry Przeróbki Plastycznej, Wydziału Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej. Do badań zastosowano materiał w postaci blach stalowej DC04. Określono właściwości mechaniczne i topograficzne badanej blachy. Przeprowadzono na symulatorze progu ciągowego wstępne badania, określając wpływ i istotność szerokości blach, chropowatości walców, zagłębień walca środkowego, warunków tarcia i orientacji próbki na wartość współczynnika tarcia. Następnie wykonano badania eksperymentalne przeciągania blachy przez próg ciągowy, przy zastosowaniu trzech szerokości próbek, chropowatości walców, zagłębień walca środkowego, warunków smarowania oraz dwóch orientacji próbek względem kierunku walcowania. Następnie zbudowano model neuronowy, jako alternatywny sposób wyznaczania wartości współczynnika tarcia, wykonano badania numeryczne MES oraz eksperymentalne badania przemieszczania blachy przez rzeczywisty model progu ciągowego i aplikacji modelu SSN do numerycznej walidacji wyników eksperymentalnych próby przeciągania blachy ze zginaniem.

Metodyka badawcza została opracowana bardzo skrupulatnie, w sposób jasny, przejrzysty i obejmujący kompleksowo zagadnienia niezbędne do prawidłowego wykonania eksperymentów. Badania zostały zrealizowane na wysokim poziomie z dbałością o szczegóły, z zachowaniem zasad prawidłowej realizacji eksperymentu naukowego, udokumentowane dużą ilością wykresów i tablic.

W rozdziale 5 (str. 41-90), pt.: „Badania eksperymentalne” Autor w podrozdziale 5.1. przedstawił metodykę badań ciągienia blachy ze zginaniem w oparciu o model Nine’a, wyznaczył siłę i współczynnik tarcia na podstawie warunków równowagi sił działających na blachę w obszarze progu ciągowego, wyznaczył właściwości mechaniczne oraz parametry chropowatości powierzchni blachy DC04 wykorzystanej do testów, zaprezentował plan badań uwzględniający kombinację warunków/parametrów dającą w sumie 324
eksperymenty. W podrozdziale 5.2 Doktorant zaprezentował wyniki i analizę badań tarcia na progu ciągowym, w tym cechowania torów pomiarowych oraz określanie współczynnika tarcia dla wszystkich kombinacji zmiennych parametrów w testach, co doprowadziło do stwierdzenia o istotności zmiennych szerokości badanych próbek, dla wyników badań prowadzonych przy użyciu symulatora progu ciągowego, potwierdzającego wstępną tezę dysertacji. Autor wyznaczył również współczynniki efektywności smarowania „Λ” dla obydwu środków smarnych. W kolejnym podrozdziale 5.3 Autor wykonał analizę sprężynowania blach poprzez pomiar ich krzywizny natomiast w podrozdziale 5.4. zaprezentował zmiany topografii powierzchni na podstawie wyników pomiarów parametrów chropowatości blach po przejściu przez symulator progu ciągowego. Rozdział 5 stanowi prezentację wstępnych wyników badań, określających istotność wytypowanych parametrów testów na wartość współczynnika tarcia oraz weryfikację wstępnej tezy. Moim zdaniem wstępne założenia zostały pomyślnie zweryfikowane poprzez wielowymiarowe badania. Natomiast uważam, że metodyka i plan badań powinny być przedstawione w osobnym rozdziale.


Model prognostyczny wartości współczynnika tarcia zbudowano na podstawie danych wykorzystanych do budowy modelu regresyjnego. Dla większości prognozowanych wartości współczynnika tarcia błąd prognozy nie przekracza 0,01. O dobrym stopniu dokładności predykcji wartości współczynnika tarcia przez SSN świadczy również wartość ilorazu odchylenia standardowego dla zbioru testowego mniejsza od 0,2.

elementów podczas gięcia. Zaoferżono model materiału sprężysto-plastyczny z nieliniową charakterystyką funkcji umocnienia odkształcenioowego określonego równaniem potęgowym Hollomona. Do określenia zachowania się materiału przyjęto materiał izotropowy według kryterium Hubera-Misesa-Hencky'ego. Interakcje kontaktowe, zdefiniowano jako kontakt powierzchniowy pomiędzy blachą i walcami roboczymi i opisano prawem Coulomba. Analizę wrażliwości siatki wykonano w oparciu o stałą liczbę warstw elementów na grubości blachy lw = 5, zmieniano natomiast wielkość siatki elementów w płaszczyźnie blachy. Symulacje realizowano w warunkach występowania tarcia oraz beztarczowych. Określono współczynnik tarcia, rozkład odkształceń zaścęnych, zmianę profilu blachy w zależności od zagłębiania walca prostokątnego oraz szerokości próbk. Wyniki przeprowadzonych badań numerycznych wskazują przydatność metody elementów skończonych do modelowania oddziaływania progu ciągłego na blachę podczas procesu wytłaczania, czego, w dotychczasowych pracach, w modelach numerycznych nie uwzględniano.

W rozdziale 8 pt. „Weryfikacja wyników uzyskanych za pomocą symulatora progu ciągłego” Doktorant zaproponował procedurę weryfikacyjną, uwzględniającą generowanie współczynnika tarcia z wykorzystaniem sztucznych sieci neuronowych, modelowania MES i badań eksperymentalnych w celu doboru szerokości próbek do testu zginania z przeciaganem. Następnie Autor opracował projekt konstrukcyjny tłocznika, umożliwiający tłoczenie blach o różnych szerokościach, przy zmiennych wysokościach progów ciągłych. Próby tłoczenia wykonano w warunkach tarcia suchego na próbkach o szerokościach 20, 25, 30, 35 i 40mm i wysokościami progów ciągłych 6, 12 i 18mm. Wyniki przebiegu siły ciągnienia w funkcji przemieszczenia stempla przedstawiono na rys. 8.2.2-8.2.12. Następnie wykonano symulacje MES, poprzedzone testem ciągnienia paska w celu wprowadzenia do modelu realnych wartości współczynnika tarcia. Konkluzję badań weryfikacyjnych Autor zamieścił w stwierdzeniu „Stosowany w badaniach przyrząd do badania oporów tarcia na progu ciągłym posiadał ograniczenie w największej szerokości próbki możliwej do badania (20 mm). Chociaż właściwie przeprowadzić podobne analizy numeryczne dla innych zagłębień progu i innych warunków tarcia należy rozbudować model neuronowy tarcia o wyniki przeciągania pasów o większej szerokości”. Natomiast kończące ten rozdział zdanie, w którym Doktorant wyraża swoją nadzieję, na dalszy rozwój prac badawczych w tym temacie, napisane w pierwszej osobie liczby pojedynczej, jest zaskakujące i raczej niespotkane.

Rozdział 9 (str. 160-162) to podsumowanie tej, napisanej na wysokim poziomie, dysertacji, a wnioski przedstawione w 15 punktach, stanowią kompleksowe wytyczne do badań analizy zjawisk tarcia w procesie kształtowania plastycznego blach metodą tłoczenia z zastosowaniem progu ciągłego.

Przedstawiona do oceny dysertacja stanowi oryginalne osiągnięcie Doktoranta. Pracę można ją określić jako kompendium wiedzy, które może być wykorzystana przy dalszych pracach naukowo-badawczych oraz przede wszystkim w obszarze badań aplikacyjnych. Na rezultaty tej pracy z pewnością oczekują osoby projektujące i symulujące procesy tłoczenia blach.
Za osiągnięcia Doktoranta uważam:

- budowę modelu regresyjnego i prognostycznego sieci neuronowej, jako alternatywnego sposobu wyznaczania wartości współczynnika tarcia,

- modelowanie numeryczne zginania blachy z przeciąganiem, udowadniające tezę pracy, że do wykonania analizy procesu przejścia blachy przez symulator progu ciągowego wymagane jest zastosowanie modelu 3D blachy,

- projekt i wykonanie oryginalnego tłocznika oraz realizację badań przy zastosowaniu zróżnicowanej szerokości próbek i zmiennych wysokościach progów ciągowych.

Lektura pracy stanowiła duże wyzwanie. Nie oznacza to jednak, że wyniki zostały zaprezentowane w sposób chaotyczny czy też nielógiczny. Ta trudność wynikała z uwagi na gigantyczną ilość zrealizowanych badań materiałowych, symulacji numerycznych oraz badań eksperymentalnych, co niewątpliwie świadczy o dużej wiedzy Doktoranta w wielu obszarach podjętych w ramach dysertacji, jaki i umiejętność planowania eksperymentów oraz analizy i wnioskowania.

Praca została zredagowana poprawną polszczyzną, zarówno w obszarze ogólnym, jak i technicznym.

Uwagi krytyczne

Lektura rozprawy nasuwa pewne uwagi i wątpliwości, które mają charakter dyskusyjny.

1. W pracy brak jest kompleksowej, krytycznej analizy literaturowej na końcu każdego z rozdziałów 2-3 lub w formie dodatkowego rozdziału, na podstawie której powinno formułować się tezę i podejmować decyzję o celu i zakresie badań. Fragmentarycznie Autor przedstawił taką krytykę w rozdziale 3.5, str. 31 w akapicie rozpoczętym się od słów: „Wstępne badania przeprowadzone...”, w rozdziale 4, str. 3 w akapicie: „...upraszczanie modelu progu ciągowego do płaskiego stanu odkształceń [127] wprowadzane przez wielu autorów nie jest zasadne” oraz w dalszym ciągu rozdziału 4, str. 39 w akapicie rozpoczętym się od słów: „Każdy z przedstawionych modeli...”.

2. Informacje dotyczące sztucznych sieci neuronowych i modelowania MES w końcowej części analizy literaturowej są niefortunnie zamieszczone w jednym rozdziale i zbyt lakoniczne, mimo, że Autor stwierdza na str. 38, że: „Podstawowym źródłem danych do analizy procesów kształtowania blach są dzisiaj wyniki symulacji komputerowych, opartych na metodzie elementów skończonych. Analiza ta obejmuje coraz bardziej złożone zjawiska”. Poza tym uważam, że podrozdziały 6.1. „Górnne zasady tworzenia modelu neuronowego” i 6.2. „Model zmian współczynnika tarcia” powinny znaleźć się w części dotyczącej analizy literaturowej a nie części eksperymentalnej pracy.
3. Mimo, że cele i tezy ją jasne to ich sformułowanie jest trochę karkolomne. Powinny zostać przedstawione, niezależnie a nie w jednym, czy dwóch zdaniach.

4. W pracy brak jest uzasadnienia wyboru zastosowanych w badaniach parametrów, w tym szerokości próbek, chropowatości walców, zagłębienia walcu środkowego, wartości luzu, kątów opasania i prędkości przeciągania blachy, o których mowa na stronach 39-43.

5. W pracy (str. 46) pojawia się informacja, że „...przedstawiono przykładowe testowe przebiegi zarejestrowanych wartości sil podczas ciągnienia próbki”, na osi Y wykresu (rys. 5.1.6) Siła standardowa, a w podpisie pod tym rysunkiem Siła ciągnięcia... Jest to wyraźna niekonsekwencja w nazewnictwie.


7. Brak wyjaśnienia kodów cyfrowo-literowych, identyfikujących oznaczenia próbek przedstawionych na str. 58-59 w tab. 5.1.3.1 i 5.1.3.2. Stwarza to trudność w interpretacji i analizie wyników badań.

8. Żądać należy, że nie zostały zrealizowane badania wpływ prędkości przeciągania blachy przez próg ciągowy, mimo, że Autor stwierdza na str. 73: „Prawdopodobnie wpływ tego czynnika byłby znaczący, zwłaszcza dla smarów o mniejszej lepkości”.

9. Brak jest fotografii powierzchni blachy poddanej badaniom w stanie dostawy, przez co nie można jej porównać z obserwacjami blach testowanych w warunkach tablicy takiego i w warunkach smarowania (str. 76-78, rys. 5.2.24-5.2.27). Poza tym obserwacje powierzchni są przedstawione dla wybranych parametrów testowych a powinny być dla wszystkich, co stanowiłoby podstawę do kompleksowego wnioskowania.

10. Na str. 79 Autor zamieszczza zdanie: „Podczas oględzin próbek po próbach przeciągania przez symulator prógów ciągowych zaproponowano, że próbki zachowały krzywiznę będącą wynikiem odkładania sprężystych materiału [106]”. Pojawiający się odnośnik literatury wskazuje, że to nie Autor wykonał te badania (obserwacje). Poza tym na str. 80 pojawiają się tabele 5.3.1 i 5.3.2 z wynikami badań a następnie tekst: „Wyniki badań zostały opublikowane...[106]. Kto zatem jest autorem wyników tych badań?

11. Na str. 79 Autor zamieszczana zdanie: „Ułożone odpowiednio parami, próbkę przeciągniętą przez walce obrażające się i próbkę przeciągniętą przez walce zablokowane zeskanowano, a otrzymane obrazy poddano pomiarom, przy użyciu programu Auto CAD.” Nie wyjaśnia jednak w jaki sposób zeskanowano próbki

12. Przedstawiony na str. 161 wniosek, że „Poprawne formułowanie danych wejściowych do symulacji procesów kształtowania blach przy użyciu metod elementów skośnych MES jest warunkiem niezbędnym do poznania zjawisk
charakteryzujących te procesy i optymalizacji ich przebiegu” jest stwierdzeniem oczywistym i nie powinien być zamieszczony w dysertacji.

Pomimo starannego zredagowania rozprawy wystąpiły w niej nieliczne błędy edycyjne i niedopatrzenia:

-str. 6 - brak odnóżnika literaturowego na końcu podpisu pod Rys. 2.1.1,
-str. 32 - pomyłka w oznaczeniu nr wykresów. Zamiast Rys. 3.4.4 i Rys. 3.4.6, powinno być Rys. 3.5.5 i Rys. 3.5.6,
-str. 39 - stylistyka - zamiast „3 zagłębienia palca środkowej symulatora”, powinno być „3 zagłębienia palca środkowego symulatora”
-str. 43 - niefortunnie zamieszczono stwierdzenie „Oznaczmy siły działające na...” zamiast np. „Siły zostały oznaczone...”,
-str. 44 - przesunięcie numeru wzoru (5.1) z prawej strony tekstu do środka,
-str. 50 - niepotrzebny, przypadkowy zapewne znak przed słowem „oraz”,
-str. 65 - opis osi na wykresie (Rys. 5.2.6) rozpoczyna się z dużej litery: „Współczynnik tarcia” natomiast na pozostałych wykresach związałych z tym zagadnieniem z małej litery,
-str. 80 - stylistyka - „Przedstawione zależności miały wpływ: zagłębienie palca środkowego i szerokość próbek”,
-str. 108 - stylistyka - „W tym czasie wałek roboczy ruchomy (rys. 7.1.1.2) nie zmieniała swojego położenia”
-str. 160 - zamiast „po przez” powinno być „poprzez”.
-permanentnie Autor stosuje przecinki przed słowem „oraz”,
-brak jest w tekście odwoływania się do wzorów (np. 2.6, 2.8-2.10)

Nie najlepiej wygląda strona edycyjna pracy w obszarze:

-przedstawienia schematów badań i fotografii urządzeń, stanowisk. Niektóre schematy są rozciągnięte (np. str. 8, rys. 2.21.), a czcionka zróżnicowana, natomiast na fotografii brakuje oznaczeń elementów wchodzących w skład stanowiska badawczego (np. str. 42, rys. 5.1.2.). Poza tym schematy nie zostały wykonane przez Autora, tylko wykonano ksero, skan i zamieszczono w pracy.

-redakcji wyników badań w postaci wykresów oraz fotografii. Wykresy dotyczącego tego samego zagadnienia mają zróżnicowaną wysokość, szerokość oraz wielkość i rodzaj czcionki, większość wykresów ma pomocniczą siatkę, której rodzaj i wymiary są zróżnicowane a jej linie zbyt grube, co jest irytujące i może utrudniać interpretację wyników (np. str. 70, rys. 5.2.16, str. 105, rys. 6.4.2, str. 123, rys. 7.3.2.6). Szkoła, że Doktorant nie wykonał wszystkich wykresów bez pomocniczych linii siatki lub z wykorzystaniem jednego rodzaju. i nie zastosował jednakowej pod względem rodzaju i wielkości czcionki,

-mało widocznej czcionki na skali (str. 129-131, rys. 7.3.2.14-7.3.2.16)

Powyższe uwagi merytoryczne i edycyjne nie umniejszają dużej wartości dysertacji.
Uważam rozprawę doktorską za bardzo wartościową i oryginalną.
Ocena końcowa

Ocena przedstawionej do zaopiniowania rozprawy doktorskiej mgr inż. Romualda Fejkielea upoważnia mnie do stwierdzenia, że Autor dokonał wnikiowej analizy stanu zagadnienia i na tej podstawie trafnie sformułował cele rozprawy. Poprzez bardzo szerokie badania materiałowe i symulacje numeryczne oraz wnikiową analizę cele zostały przez Doktoranta osiągnięte.

Podsumowując moją recenzję stwierdzam, że mgr inż. Romuald Fejkiel wykazał się bardzo dobrą znajomością przedmiotu badań i poprawnie oraz bardzo starannie zredagował obszerną pracę badawczą. Wykazał się przy tym bardzo dobrym przygotowaniem merytorycznym, umiejętnością wykorzystania metod, technik i narzędzi do zbierania i analizy danych oraz zdolnością do samodzielnego planowania i realizacji badań naukowych.

Recenzowana rozprawa doktorska może być przypisana do dyscypliny naukowej Budowa i Eksplotacja Maszyn.

Wniosek

Przedłożona do zaopiniowania rozprawa doktorska mgr inż. Romualda Fejkielea pt. „Analiza oporów tarcia podczas przejścia blachy przez próg ciągowy w procesie tłoczenia blach” spełnia wymogi stawiane pracom doktorskim przez Ustawę o Stopniach Naukowych i Tytule Naukowym oraz o Stopniach i Tytule z Zakresu Sztuki z dnia 14.03.2003r. (Dz. U. Nr 65, poz. 595) z późniejszymi zmianami.

W związku z powyższym wnoszę do Rady Wydziału Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej o dopuszczenie mgr inż. Romualda Fejkielea do publicznej obrony przedłożonej rozprawy doktorskiej.

dr hab. inż. Krzysztof Żaba, prof. AGH